
Comparative of source code generated by principal LLM generators for Python and
Lua languages

Gustavo Rossoni Correa de Barros, Mirkos O. Martins
Computer Science

UFN - Universidade Franciscana
Santa Maria - RS

gustavo.rossoni@ufn.edu.br, mirkos@ufn.edu.br

Abstract—As artificial intelligence becomes increasingly ca-
pable of tasks traditionally done by humans, its role in soft-
ware development, particularly in code generation, is growing.
This study evaluates the performance of code generation
tools like GitHub Copilot, Meta CodeLLaMa 34b instruct,
and ChatGPT 3.5 in generating Python and Lua code for
software development tasks. Test-Driven Development (TDD)
was employed as an analytical framework to assess accuracy,
readability, performance, and complexity of the generated code.
The findings reveal that while AI models show promise in
code generation, their effectiveness varies significantly across
different tasks and languages, highlighting the need for careful
selection and validation when integrating AI tools into software
development workflows.

Keywords: Large Language Models; Test-Driven De-
velopment; Code Analysis.

I. INTRODUCTION

Software developers have raised concerns about the emer-
gence of generative artificial intelligence tools that can
generate source code as good as humans. This phenomenon
has sparked discussions surrounding ethical implications,
copyright infringement risks, and potential malicious con-
sequences of unregulated usage [1].

Developers are particularly concerned about building trust
in AI-powered code generation tools, as their adoption
depends on understanding the appropriate levels of trust and
how to design interfaces to facilitate it [2].

These challenges are further compounded by the fact that
generative AI models, such as ChatGPT, have the potential
to create serious online risks, including privacy and safety
concerns [3].

In light of these issues, it becomes crucial to evaluate the
performance, limitations, and applicability of AI-powered
code generation tools in real-world software development
contexts. This study aims to analyze the quality of code
generated by large language models (LLMs) in Python and
Lua languages using GitHub Copilot [4], Meta LLaMa
2 1 [5], Gemini (previously known as Bard), Claude V2
from Anthropic [6], the Perplexity AI LLM-Powered search

1Specifically CodeLLaMa 34b instruct

engine, and ChatGPT 3.5 [7] through Test-Driven Develop-
ment (TDD) methodology [8].

The research objectives of this study are threefold: Firstly,
to compare the code generation performance of different
LLMs for Python and Lua programming languages. Sec-
ondly, to assess the readability, performance, and complexity
of the generated code. Finally, to identify the strengths and
weaknesses of each model in handling specific programming
tasks.

II. RELATED WORK

There has been a growing body of research focusing on
the performance evaluation of LLMs in coding related tasks.
Yuan et al. [9] evaluated 10 open-source instructed LLMs
on four representative code comprehension and generation
tasks. They found that for the zero-shot setting, instructed
LLMs are very competitive on code comprehension and
generation tasks and sometimes even better than small state-
of-the-art models specifically fine-tuned on each downstream
task. They also found that larger instructed LLMs are not
always better on code-related tasks.

Liu et al. [10] performed a systematic empirical assess-
ment of code generation using ChatGPT, a recent and pop-
ular LLM. Their evaluation encompassed a comprehensive
analysis of code snippets generated by ChatGPT, focusing
on three critical aspects: correctness, understandability, and
security. They also specifically investigated ChatGPT’s abil-
ity to engage in multi-round process (i.e., ChatGPT’s dialog
ability) of facilitating code generation.

Zhong et al. [11] studied the reliability and robustness of
the code generation from LLMs. They proposed a dataset
RobustAPI for evaluating the reliability and robustness of
code generated by LLMs. They collected 1208 coding
questions from StackOverflow on 24 representative Java
APIs and evaluated them on current popular LLMs. The
evaluation results showed that even for GPT-4, 62% of the
generated code contains API misuses, which would cause
unexpected consequences if the code is introduced into real-
world software.

These studies provide valuable insights into the perfor-
mance of LLMs in tackling code generation tasks and



uncover potential issues and limitations that arise in the
LLM-based code generation. They lay the groundwork for
improving AI and LLM-based code generation techniques.

This article has an approach to measure different LLM’s
with a method that uses scores for accuracy, readability,
complexity and performance in different categories of al-
gorithms generated in two languages: Python and Lua.

III. BACKGROUND

A. Large Language Models (LLMs)

A large language model (LLM) is a type of neural network
architecture that is designed to predict the next word in
a sequence based on its history. These models use deep
learning techniques, specifically recurrent neural networks
(RNNs) or transformer architectures, to learn the probability
distribution over sequences of words. LLMs can be trained
on massive amounts of text data to produce human-like
outputs when generating new text [12] [13].

B. Python and Lua

Python: is a high-level, interpreted programming
language with dynamic semantics. Its design philosophy
emphasizes code readability, and its syntax allows
programmers to express concepts in fewer lines of code
than would be possible in languages such as C++ or
Java. Python supports multiple programming paradigms,
including procedural, object-oriented, and functional styles.
It is widely used for web development, data science, and
artificial intelligence applications [14] [15].

Lua: is a lightweight, multi-paradigm programming
language designed for embedded systems and client-
side applications. Lua is known for its simplicity, ease
of embedding, and small footprint, making it ideal for
scripting tasks and embedded systems

IV. METHODOLOGY

To evaluate the quality of code generated by LLMs in
Python and Lua languages, the adopted methodology was
based on the Test-Driven Development (TDD) approach.
TDD is an agile software development process that empha-
sizes writing automated tests before writing the production
code [8]. It was designed and developed a battery of unit-
tests for each prompt; including automated performance tests
and readability tests in the case of Python, in Lua this part
was manual; time complexity tests.

For this study, the following LLM-based code generation
tools were selected for comparison:

2As cited on the developer’s blog: [4]

Table I: Summary of LLM-based code generation tools

Tool Foundation Model Domain

ChatGPT 3.5 GPT-3.5 General
GitHub Copilot GPT4 2 Code
CodeLlama 34B Instruct LLaMa 2 Code
Gemini Gemini General
Claude V2 Claude V2 General
Perplexity AI unknown General

Table II: Libraries used for each test metric in Python and
Lua

Test Metric Python Lua

Accuracy Pytest Manual evaluation using If statements
Readability Pylint Luacheck extension
Complexity Manual analysis3 Manual analysis
Performance time.perf_counter() time.clock()

A. Evaluation Metrics

The evaluation was performed considering the following
core metrics:

• Accuracy: The concept of accuracy is closely linked
to the notion of measurement error, which refers to
the deviation from a true value [16]. In the context of
this study, accuracy refers to the degree to which the
generated code aligns with the intended functionality
or approximation to the expected result of passing all
unit tests [17] [18].

• Readability: Readability is the ease with which a
developer can understand a program’s source code. It is
influenced by factors such as naming conventions, pro-
gramming constructs, and formatting guidelines [19].

• Performance: Performance refers to the average time
taken by the generated code to complete the desired
task. In this study, the performance metric is calculated
by measuring the average time taken by the generated
code to execute its task over a number of iterations.

• Complexity: Complexity in this study refers to the
algorithmic complexity of the generated code, i.e., the
order of growth of its running time as the input size
increases [20].

B. Libraries

The evaluation of the generated code was performed using
a diverse set of tools for Python and Lua languages. This
section presents the libraries used for each of the four test
metrics, including accuracy, readability, performance, and
complexity, along with a brief introduction to each tool’s
role. Table IV summarizes the libraries and their usage for
the respective metrics.

For accuracy, Pytest was used in Python to run unit tests
for different scenarios, while manual testing was employed

3Initially, the Big_O library was used for complexity analysis in Python.



Figure 1: Evaluation pipeline for Python and Lua code
generation

in Lua utilizing custom-built If statement conditions. In
terms of readability, pylint was leveraged in Python to
check the code against a set of rules and conventions,
whereas luacheck Visual Studio Code extension served as
the corresponding tool in Lua. For performance evaluation,
the built-in Python function time.perf_counter() and
its equivalent os.clock() in Lua were utilized to measure
execution times. Finally, for assessing code complexity,
Python’s Big_O library was initially used but later replaced
due to difficulties in handling certain edge cases; hence,
manual analysis was conducted for both Python and Lua.

The performance tests were done by calculating the av-
erage runtime in milliseconds over 100k iterations, with a
warm-up period prior to measuring the actual time.

1) Evaluation Pipeline: The evaluation pipeline followed
the steps outlined below (Fig. 1):

1) Define programming problems; Craft prompts; De-
velop unit tests: Define a set of relevant programming

problems in Python and Lua, write effective instruc-
tion prompts for each language model, and develop a
suite of unit tests to cover various scenarios.

2) Revise prompt/problem until LLM passes accuracy
test: Iteratively refine the prompts and problems until
at least one or more of the language models is able to
pass most or all the unit tests.

3) Select and configure LLMs: Select the language
models to be evaluated, such as GitHub Copilot, Meta
LLaMa 2, Gemini, Claude V2, Perplexity AI, and
ChatGPT 3.5.

4) Input prompts into LLMs; Generate code; Execute
code; Collect data: For each unprocessed LLM and
programming problem, input the prompts, generate the
code, execute the code, and collect the necessary data.

5) Evaluate code against tests; Measure performance;
Assess readability and complexity: Evaluate the gen-
erated code against the unit tests to measure accuracy,
conduct performance tests, and assess the readability
and complexity of the code.

6) Contrast LLM strengths and weaknesses: Analyze
the results to highlight the comparative strengths and
weaknesses of the language models in generating
source code for the defined programming tasks.

7) Compute overall score: Compute the overall score
for each language model’s output using the equation:

score = ((A × 0.4) + (R × 0.10) + (P × 0.35) + (C × 0.15))
(1)

where A is Accuracy, R is Readability, P is Perfor-
mance, and C is Complexity. Each factor is assigned
a weight represented as a fraction of 1 (or 100%). For
instance, A contributes 40% to the overall score, while
R contributes 10%. A weight of 0 would imply the
factor does not affect the score, and a weight of 1 (or
100%) would mean the factor completely determines
the score.

The decision of the weights was given based on the
importance of each metric in the context of code generation.
Accuracy, for instance, is a fundamental aspect of code
generation, as it ensures the code produced by the LLMs can
perform the intended task. Readability, on the other hand,
is important for maintainability and collaboration purposes,
but not essential for the immediate functionality of the code.
Performance is crucial for real-world applications, as it di-
rectly impacts the efficiency, while the scalability is dictated
by the time complexity of the generated code. Therefore, the
weights were assigned based on these considerations.

2) Calculating Scores: The scores for each LLM were
calculated based on the evaluation metrics for accuracy,
readability, performance, and complexity, as described in
Section IV. The weights assigned to each metric are pre-
sented in Equation 1. The scores for each metric were
normalized to a range of 0 to 1 before calculating the overall



Table III: Complexity score mapping

Complexity Score

Constant 1.0
Logarithmic 0.85
Linear 0.70
Linearithmic 0.60
Quadratic 0.50
Cubic 0.30
Polynomial 0.20
Exponential 0.00

score.
The accuracy scores were obtained by calculating the

percentage of unit tests passed for each code generation
output i.e, given an x number of unit tests, if y number
of tests pass, then the accuracy score would be y/x.

The readability scores were obtained by running the
code through static code analysis tools such as Pylint for
Python and Luacheck for Lua. These tools analyze the
code and report violations of coding standards and best
practices, assigning scores based on the severity and number
of violations. The scores were then normalized to the range
of 0 to 1, where a score of 1 represents perfect readability
with no violations, and 0 represents poor readability with
over 10 violations.

The performance scores were calculated by measuring the
average execution time of the code over multiple iterations.
The execution times were normalized to the range of 0 to 1,
where the fastest code received a score of 1, and the slowest
code received a score of 0.

The complexity scores were determined by manually an-
alyzing the algorithmic complexity of the code, considering
only the time complexity. The complexity scores were based
on the following already normalized Table III:

Each code’s complexity was manually assigned a score
based on Table III.

V. RESULTS

The results obtained through our evaluation process, with
approximately 120 hours of local testing, were done on an
Acer Nitro 5 laptop with a Ryzen 7 6800H processor, 16GB
DDR5 4800MHz RAM, RTX 3070 TI graphics card, and
Windows 11 Home OS.

Utilizing Python 3.10.8 and Lua 5.4.2, the evaluation
results are presented in detail in Table IV and Table V. These
tables display the final scores for each of the six LLMs
tested in Lua and Python, respectively, after applying their
individual results to the scoring Equation 1, where Accuracy,
Readability, Performance, and Complexity were weighted as
40%, 10%, 35%, and 15%, respectively. The overall scores
range from 0 to 1, with higher scores indicating better
performance.

The evaluation results were extensively tested using var-
ious unit tests, which aimed to measure the accuracy of the

LLMs’ performance. A total of 16 unit tests were conducted,
covering six different prompts. The results of these unit tests
are presented below.

• Prompt 1 (compare directories): Two unit tests were
conducted. The first test created two directories with all
files being equal, and the second test created directories
with a few files having different modification dates.

• Prompt 2 (excel sort): Three unit tests were per-
formed. Each test checked the sorting of columns 1,
2, and 3, respectively, and verified the sorted data in
the output file.

• Prompt 3 (zipfs law): Three unit tests were performed.
The first test checked the frequency of the first six
words, the second test checked the frequency of the 7th
and 8th words, and the third test checked the frequency
of the 9th and 10th words (see Section B-A for more
details).

• Prompt 4 (calculate stats): Two unit tests were per-
formed. The first test checked the calculated mean,
and the second test checked the calculated standard
deviation against expected results.

• Prompt 5 (svg dot product): Three unit tests were
performed. The first test compared the calculated dot
product with the expected result, the second test verified
the return of -1 when there were fewer than two vectors
in the metadata, and the third test verified the return of
-1 when the vectors could not be parsed.

• Prompt 6 (display text file): Three unit tests were
conducted. The first test assessed the successful execu-
tion of the implementation, returning True and a valid
file path for an existing test.txt file. The second test
examined the handling of non-existent or invalid file
paths, verifying the return of False and None. The third
test evaluated the correct sorting of name-value pairs in
descending order according to their values.

In addition to accuracy, the performance of each LLM
was evaluated by measuring the average execution time (in
milliseconds) of the generated code over multiple iterations.
The complexity of the generated code was manually ana-
lyzed based on the algorithmic complexity of each solution.
Finally, the readability of the generated code was evaluated
using static code analysis tools such as Pylint for Python
and Luacheck for Lua. The scores for each metric were then
normalized to a range of 0 to 1, with higher scores indicating
better performance.

The results in Table IV demonstrate that the performance
of the evaluated LLMs in generating Lua code was generally
suboptimal. ChatGPT 3.5 emerged as the top-performing
model, with only two scores below 0.5. In contrast, LLaMa,
Perplexity AI, and Gemini (Bard) exhibited the lowest
overall scores, with a few exceptions, such as LLaMa’s
performance on Prompt 5, and Perplexity AI’s and Gemini’s

3Note: P1-P6 represent Prompts 1-6. The highest possible score is 1.00.



Table IV: Ranking of LLM’s with source code generated to
Lua language

LLM P1 P2 P3 P4 P5 P6 Avg

ChatGPT 3.5 0.755 0.078 0.101 0.561 0.635 0.929 0.509
Claude V2 0.067 0.066 0.667 0.538 0.416 0.011 0.294
CoPilot 0.067 0.011 0.462 0.944 0.755 0.579 0.469
Gemini (Bard) 0.0 0.0 0.011 0.944 0.022 0.0 0.162
LLaMa 0.089 0.044 0.146 0.089 0.722 0.0 0.181
Perplexity 0.0 0.256 0.438 0.944 0.602 0.0 0.373

Table V: Ranking of LLM’s with source code generated to
Python language

LLM P1 P2 P3 P4 P5 P6 Avg

ChatGPT 3.5 0.531 0.501 0.856 0.908 0.584 0.575 0.659
Claude V2 0.654 0.455 0.798 0.86 0.6 0.586 0.658
CoPilot 0.622 0.508 0.251 0.859 0.756 0.908 0.65
Gemini (Bard) 0.655 0.506 0.748 0.305 0.588 0.55 0.558
LLaMa 0.376 0.025 0.751 0.919 0.198 0.328 0.432
Perplexity 0.000 0.523 0.890 0.06 0.795 0.877 0.524

performance on Prompt 4 4.
The results showed in Table V reveal a more varied

performance across the LLMs in generating Python code
compared to their Lua counterparts. While no single model
consistently outperformed the others across all prompts,
ChatGPT 3.5 and GitHub Copilot exhibited the highest
overall scores, with more instances of scores above 0.5.
Notably, Perplexity AI demonstrated strong performance on
Prompts 3, 5, and 6, indicating its capability in specific
coding tasks.

A. Performance Overview

The key findings derived from the analysis of the results
are as follows.

1) Prompt-wise Analysis:
• Prompt 1: Compare Directories

For this prompt, Claude V2 and Gemini (Bard) per-
formed well in Python, while ChatGPT 3.5 led the way
in Lua. The complexity of this prompt, involving file
system operations and comparing directory contents,
posed challenges for some models.

• Prompt 2: Spreadsheet Sort
This prompt proved to be challenging for most mod-
els, with Perplexity and ChatGPT 3.5 achieving the
highest scores in Python and Lua, respectively. The
requirement to handle mixed data types and sorting
logic may have contributed to the difficulty.

• Prompt 3: Zipf’s Law
Perplexity and ChatGPT 3.5 excelled in this prompt
for Python, while Claude V2 led the pack for Lua. The

4Note about scores below 0.1 in both Lua and Python: See V-A2 for
more details

(a) Lua scores

(b) Python scores

Figure 2: scores per LLM on each prompt for Lua (left) and
Python (right)

models demonstrated proficiency in text processing and
frequency analysis tasks.

• Prompt 4: Calculate Statistics
Gemini (Bard), CoPilot, and LLaMa performed ex-
ceptionally well in this prompt for both languages,
showcasing their strengths in mathematical computa-
tions and handling numerical data.

• Prompt 5: SVG Dot Product
CoPilot and LLaMa achieved the highest scores in
Lua, while Perplexity led the way in Python. The
models exhibited varying degrees of success in parsing
and manipulating SVG files.

• Prompt 6: Display Text File
ChatGPT 3.5 and CoPilot excelled in this prompt for
Python, demonstrating proficiency in file handling, data
manipulation, and GUI development. However, most



models struggled with this prompt in Lua, potentially
due to language-specific libraries or the complexity of
the requirements.

2) Outliers and Errors: During the evaluation process,
several instances of outliers and errors were identified, as
show by the scores in the Tables IV and V. These can be
attributed to a variety of factors; here’s a detailed analysis
per LLM for each score below 0.1:

- ChatGPT 3.5 The outlier occurred in prompt 2 (Excel
Sort) for Lua, the generated code imported a placeholder ex-
cel_library, which made unit testing, performance profiling
and code complexity analysis not viable for this scenario;
leaving only the readability score with weight of just 10%
to be computed.

-Claude V2 In Lua, it had low scores for prompts 1,
2 and 6. For prompt 1 and 6, it had runtime errors due
to calling a nil value; for prompt 1 it attempted to use
ipairs(list_files(dir1)), where list_files was supposed to be
a function that returns the list of files in dir1, yet since this
function was not properly defined or implemented in the
generated code, the error occurred, Claude V2 should have
utilized one of the available libraries such as luafilesystem
(lfs) for achieving the same task. In Prompt 6, it attempted to
set up a GUI interface without actually importing any GUI
related libraries, leading to a runtime error when attempting
to call gg.newWindow(800, 600) expression, which should
be used only after importing the respective GUI module.
In both scenarios, all other metrics could not be computed,
and only the readability score was determined; for prompt
2, Claude V2 got confused and imported xlsx instead of
luaxlsx, which led to the execution failing as no xlsl.dll
and xlsl.lua could be found inside LuaRocks packages,
preventing it from finding the required module, the only
score that could be calculated was based on readability.

- GitHub Copilot In Lua both prompt 1 (Compare
Directories) and prompt 2 (Excel Sort) had runtime errors
as they attempted to call a nil value5, halting the execution
of all further unit tests: for prompt 1 the generated code
attempted to use a non-existent function table. Contains,
and for prompt 2 it tried to access an undefined function
load_excel_data for loading the Excel file at the start of the
function. Both had their entire score based solely on their
readability, since no other metrics could be calculated.

- Gemini (Bard) In Lua, the model had low scores for
all prompts except prompt 4 (Calculate Stats). For prompt
2 (Excel Sort), it refused to write the code, claiming to
be unable to directly create Lua code and only provided
an outline of the steps needed to solve the problem; For
Prompt 1, 3 and 6 it had runtime errors for calling a nil

5In Lua, a nil value error occurs when a program attempts to use or
access a variable or function that has not been assigned a value or has
been explicitly set to nil. This error typically indicates that the program
is trying to call a non-existent function or access a non-existent table key,
leading to a runtime error and halting the execution of the program.

value; for prompt 1 it attempted to use a non-existent io
function dir, for prompt 3 and 6 it tried to access a non-
existent string function split; for prompt 5 the problem was
the choice of library for the XML parsing, it has chosen
the LuaXML library which is not compatible with our test
environment (Lua 5.4.2) as it requires Lua 5.1 to 5.3 [21].
All these errors prevented the execution of the test suite,
making it impossible to compute accuracy, performance, and
complexity scores. Instead, these scores were determined
solely based on readability.

- LLaMa It had four low scores in Lua: prompt 1
(Compare Directories), prompt 2 (Excel Sort), prompt 4
(Calculate Stats) and prompt 6 (Display Text File). For
prompt 1, 4 and 6, the results were similar to those discussed
above for ChatGPT 3.5 and GitHub Copilot; calling a nil
value halted the execution of the test suite, making it im-
possible to compute accuracy, performance, and complexity
scores. Instead, these scores were determined solely based
on readability. For prompt 2, the model also produced a non-
executable solution that failed to import the required library
luaxlsx, this library has just a README in Chinese on
GitHub, being maintained by xiyoo0812 and not supported
by Luarocks for easy installation [22]. All four had their
score solely based on their readability.

In Python, the prompt 2 (Excel Sort) had a Type Error
due to an incorrect attempt to access a DataFrame column
using the df.columns[column_index] expression inside the
sort_values function, instead of using df[column_index],
which would have worked correctly. This error prevented
the execution of the test suite, leaving only the readability
score to be computed.

- Perplexity AI It had outliers in prompts 1 and 6 in
Lua. For prompt 1 (Compare Directories), Perplexity AI
encountered an infinite loop and an error due to the incorrect
usage of io.popen with the external command ls, which
doesn’t exist on Windows, again, utilizing the lfs standard
library of Lua would have prevented such issues as it works
regardless of the operational system. For prompt 6, it had a
variety of issues such as the usage of the json Lua library
that only works up to Lua 5.3, which is not compatible with
our test environment (Lua 5.4.2) [23], it made reference to
a non-existent or incorrectly named fs library for handling
files instead of the lfs library. All these errors prevented the
execution of the test suite, making it impossible to compute
accuracy, performance, and complexity scores, leaving only
the readability score.

The results presented in Figure 3 show a stark contrast
between the performance of ChatGPT and Claude V2 when
executing Prompt 3 in Lua. The unit tests for this task
consisted of 3 subtests:

• Test 1: First six-words frequency.
• Test 2: 7th and 8th words’ frequencies.
• Test 3: Last two words’ frequencies.

Test 1 makes sure that the top six most frequent words are



(a) ChatGPT results with 0% accuracy.

(b) Claude V2 results with 100% accuracy.

Figure 3: Results of executing Prompt 3 in Lua (Zipf’s Law).

identified correctly; Test 2 and 3 were made as there was
more than one valid solution for the task, and they were
designed to check the accuracy of the model in identifying
the 7th and 8th most frequent words and the last two words,
respectively.

In Figure 3 (A), ChatGPT implementation of Zipf’s Law
for Lua returned broken characters, such as ÔÇØ instead of
i on the 2nd word, resulting in failure for the first test as
one of the first six words was not identified correctly, for
the 2nd and 3rd tests, the model failed to identify the 7th
and 10th most frequent words correctly, it did not identify
the 7th word as ’a’, or ’in’ but ’was’ instead, and it did not
identify the 10th word as ’that’ or ’ollie’ but ’a’ instead. The
model had 0% accuracy for this prompt, as it didn’t return
any valid results for the three established tests.

On the other hand, Figure 3 (B) shows the results from
Claude V2, which achieved 100% accuracy for the same task
as it correctly identified the top six most frequent words, the
7th and 8th most frequent words, and the last two words as
required by the unit tests. Claude V2 demonstrated a much
higher level of accuracy and proficiency in executing Prompt
3 in Lua, as it passed all the subtests and showed no signs
of failure in identifying the correct words.

VI. CONCLUSION

The results of this study provide valuable insights into the
strengths and weaknesses of various LLMs in generating

source code for Python and Lua languages. It highlights
the varying performance of these models across different
programming tasks and language contexts.

While no single LLM consistently outperformed the oth-
ers across all prompts, certain models exhibited notable
strengths in specific areas. For example, ChatGPT 3.5 and
CoPilot demonstrated proficiency in text processing, mathe-
matical computations, and file handling tasks, while Claude
V2 and Perplexity excelled in tasks involving frequency
analysis and data manipulation.

As the field of generative AI continues to evolve, it is
essential to maintain a critical and analytical approach to
evaluating the performance and applicability of LLMs in
software development. Ongoing research and collaboration
between developers, researchers, and AI experts will be
key to harnessing the full potential of these technologies
while mitigating potential risks and ensuring responsible and
ethical use.

VII. SUPPLEMENTARY INFORMATION

All the material used to build this work is available in the
GitHub repository indicated by the following link, including
the texts of the prompts, generated source codes and test
automation codes. This material is available for collaboration
and improvements.

https://github.com/3750gustavo/TDD_Can_LLM_Code_
unit_tests

REFERENCES

[1] Wanlun Ma et al. The "code” of Ethics:A Holistic
Audit of AI Code Generators. 2023. DOI: 10.48550/
arxiv.2305.12747. arXiv: 2305.12747 [cs.CR].

[2] “Investigating and Designing for Trust in AI-powered
Code Generation Tools”. In: arXiv.org (2023). DOI:
10.48550/arXiv.2305.11248.

[3] “Generative AI carries serious online risks”. In:
(2023). DOI: 10.1108/oxan-db278161.

[4] Yuxiang Wei, Chunqiu Steven Xia, and
Lingming Zhang. “Copiloting the Copilots: Fusing
Large Language Models with Completion Engines
for Automated Program Repair”. In: Proceedings of
the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering. ESEC/FSE 2023. <conf-loc>,
<city>San Francisco</city>, <state>CA</state>,
<country>USA</country>, </conf-loc>: Association
for Computing Machinery, 2023, pp. 172–184. DOI:
10.1145/3611643.3616271.

[5] Baptiste Rozière et al. Code Llama: Open Foundation
Models for Code. 2023. DOI: https://doi.org/10.48550/
arXiv.2308.12950. arXiv: 2308.12950 [cs.CL].



[6] Loredana Caruccio et al. “Claude 2.0 Large Lan-
guage Model: tackling a real-world classification
problem with a new Iterative Prompt Engineering
approach”. In: Intelligent Systems with Applications
(2024), p. 200336. DOI: https: / /doi .org/10.1016/j .
iswa.2024.200336.

[7] Aram Bahrini et al. “ChatGPT: Applications, oppor-
tunities, and threats”. In: 2023 Systems and Informa-
tion Engineering Design Symposium (SIEDS). IEEE.
2023, pp. 274–279. DOI: https : / / doi . org /10 .1109 /
SIEDS58326.2023.10137850.

[8] K. Beck. Test-driven Development: By Example. Se-
bastopol, CA: Addison-Wesley, 2003.

[9] Zhiqiang Yuan et al. “Evaluating Instruction-Tuned
Large Language Models on Code Comprehension and
Generation”. In: (Aug. 2023). DOI: https://doi.org/10.
48550/arXiv.2308.01240.

[10] Zhijie Liu et al. “No Need to Lift a Finger Anymore?
Assessing the Quality of Code Generation by Chat-
GPT”. In: (Aug. 2023). DOI: https://doi.org/10.48550/
arXiv.2308.04838.

[11] Li Zhong and Zilong Wang. “A Study on Robustness
and Reliability of Large Language Model Code Gen-
eration”. In: (Aug. 2023). DOI: https : / /doi .org /10 .
48550/arXiv.2308.10335.

[12] Mark Chen et al. “Evaluating large language models
trained on code”. In: arXiv preprint arXiv:2107.03374
(2021).

[13] Doron Haviv, Alexander Rivkind, and Omri Barak.
Understanding and controlling memory in recurrent
neural networks. PMLR, 2019.

[14] Guido Van Rossum and Fred L. Drake. Python 3
Reference Manual. Scotts Valley, CA: CreateSpace,
2009. ISBN: 1441412697.

[15] Gregory Piatetsky. “Python continues to eat away
at R, RapidMiner gains, SQL is steady, Tensorflow
advances pulling along Keras, Hadoop drops, Data
Science platforms consolidate, and more”. In: KD-
nuggets (2018). URL: https: / /www.kdnuggets .com/
2018/05/poll- tools-analytics-data-science-machine-
learning-results.html.

[16] Stephen V Stehman, Giles M Foody, et al. Accuracy
assessment. 2009.

[17] William M Stallings and Gerald M Gillmore. “A
note on “accuracy” and “precision””. In: Journal of
Educational Measurement 8.2 (1971), pp. 127–129.

[18] Mathias Hofer et al. “Definition of accuracy and pre-
cision—evaluating CAS-systems”. In: International
Congress Series 1281 (2005). CARS 2005: Computer
Assisted Radiology and Surgery, pp. 548–552. ISSN:
0531-5131. DOI: https://doi.org/10.1016/j.ics.2005.
03.290. URL: https://www.sciencedirect.com/science/
article/pii/S0531513105005492.

[19] Delano Oliveira et al. “Evaluating code readabil-
ity and legibility: An examination of human-centric
studies”. In: 2020 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE.
2020, pp. 348–359.

[20] Chat Room. “Algorithmic Complexity”. In: algo-
rithms 16.05 (2022), p. 04.

[21] n1tehawk. LuaXML. https : / / github. com / n1tehawk /
LuaXML. [Accessed 04-04-2024]. 2015.

[22] xiyoo0812. luaxlsx. https : / / github. com/xiyoo0812 /
luaxlsx. [Accessed 04-04-2024]. 2023.

[23] rxi. json.luam - A lightweight JSON library for Lua.
https : / / github. com / rxi / json . lua. [Accessed 04-04-
2024]. 2020.

[24] Seung Ki Baek, Sebastian Bernhardsson, and Petter
Minnhagen. “Zipf’s law unzipped”. In: New Journal
of Physics 13.4 (2011), p. 043004. DOI: 10 . 1088 /
1367-2630/13/4/043004.

sn-bibliography

APPENDIX A.
PROMPT ENGINEERING

To ensure that the language models produce relevant
solutions, it was crucial to provide clear and well-structured
instruction prompts. These prompts contained:

• A description of the task or problem, including any
specifications such as input types, output requirements,
or constraints.

• The target language (either Python or Lua).
• The expected behavior of the solution, including edge

cases and possible scenarios.

The following prompts describe the problems submitted to
each LLM for the Python programming language. The only
differences between the Python and Lua versions of these
prompts are the language name and the omission of any
library-specific details that do not apply to both languages.

Prompt 1: “Write a Python function ‘compare_directories’
that compares two given directories (‘dir1’, ‘dir2’) and
returns a detailed report of the comparison as a dictionary.
The function should meet the following requirements:
Input Parameters: The function accepts two arguments:

• Directory 1 (dir1): A path to the first directory to be
compared.

• Directory 2 (dir2): A path to the second directory to be
compared.

Both directories contain similar sets of files, but poten-
tially with differences in content and last modified dates.

Output Report Structure: The function generates a de-
tailed report summarizing the outcome of the comparison.
The report consists of a dictionary with the following key-
value pairs:



• 1. Passed: This value is True if all tests pass, and False
if any test fails.

• 2. Failed_Count: The total count of failed tests.
• 3. Failed_Tests: A list of detailed descriptions of failed

tests6.

PS: The Failure_Location is the directory with the oldest
modification date for the files that failed the test, i.e.,
’dir1’ if the file with the same name in dir1 has an older
modification date than the file in dir2.”

Prompt 2: “Write a Python function called ‘excel_sort’
with two parameters: an Excel file path and a column index
number. This function will use the pandas library to sort
the data based on the specified column in descending order.
The function must save to the disk temp file already with
the sorted data and return it’s path. PS: It should handle
columns with mixed data types, handle sorting of strings,
int, floats, dates, etc.”

Prompt 3: “Write a Python function named ‘zipfs_law’
that accepts a string as an argument. This function should
apply Zipf’s Law [24] to find the top 10 most frequently
used words in the string and return these words as a
list in descending order. For that, you should remove all
punctuation and convert all words to lowercase before
counting them.”

Prompt 4: “Write a Python function named ‘calculate_stats’
that accepts three lists of numbers as input. This function
should calculate the mean and standard deviation for
each list using the population standard deviation formula,
and return these values as a dictionary with two keys:
‘’mean’‘ and ‘’stddev’‘. Each key should correspond to a
list containing the mean and standard deviation values for
the input lists, respectively. Be sure to include the necessary
imports before the function definition.”

Prompt 5: “Write a Python function named
‘svg_dot_product’ that receives a SVG file path as a
parameter. This function should return the dot product
of two vectors found within the SVG’s <metadata>.
The vectors are represented as text content of <vector>
elements (e.g., <vector>1,2,3</vector>). If there are
fewer than two vectors in the metadata or if they cannot be
parsed, the function should return -1.”

Prompt 6: “Develop a Python function named
‘display_text_file’ that accepts a single parameter
representing the path to a .txt file. This function must
perform the following tasks:

6Each dictionary in this list contains the following key-value pairs:
Failed_Files: A list of file names that failed the test. Failure_Location:
A string specifying where the failed test occurred, i.e., ’dir1’, ’dir2’.

• Read the content of the provided .txt file.
• Utilize the delimiter ":" to parse the data within the file

into name-value pairs with keys ’name’ and ’value’,
respectively, as a list of dictionary variables.

• Sort the list of dictionaries in descending order based
on the ’value’ key.

• Check if a file named ’test.txt’ already exists in the
working directly, if not, create a temporary (Do not
delete the file upon completion) .txt file named ’test.txt’
with the sorted name-value pairs, each pair separated
by a line break; if it does, overwrite the file with the
sorted name-value pairs.

• Display the contents of the temporary .txt file in a
window GUI.

• Upon completion, return a tuple containing a boolean
value indicating whether the operation was successful
and the absolute path to the temporary .txt file.

• If an error occurs during any of these steps, like the
provided file path does not exist, the function should
return false, NONE as the absolute path to the tempo-
rary .txt file and display an appropriate error message
on the screen.

The function should be named ‘display_text_file’ and should
be able to handle exceptions and errors gracefully.”

APPENDIX B.
STRENGTHS AND WEAKNESSES OF LLMS

- ChatGPT 3.5 demonstrated consistent performance
across most prompts, excelling in Prompt 3 (Zipf’s Law)
and Prompt 4 (Calculate Statistics) for both Python and Lua.
However, it struggled with Prompt 2 (Excel Sort) in Lua.

- Claude V2 demonstrated consistent performance across
prompts, with notable strengths in Prompt 3 (Zipf’s Law)
for both languages and Prompt 1 (Compare Directories) for
Python.

- GitHub Copilot delivered strong results in Prompt
4 (Calculate Statistics) for both languages and Prompt 6
(Display Text File) for Python, showcasing its capabilities
in mathematical computations and file handling.

- Gemini (Bard) displayed varying results, with its
highest scores in Prompt 4 (Calculate Statistics) for both
languages and Prompt 1 (Compare Directories) for Python.

- LLAMa exhibited mixed performance, performing well
in Prompt 3 (Zipf’s Law) for Python and Prompt 5 (SVG
Dot Product) for Lua but struggling with other prompts,
particularly Prompt 6 (Display Text File) in Lua.

- Perplexity exhibited polarized performance, excelling in
Prompt 3 (Zipf’s Law) and Prompt 6 (Display Text File) for
Python but failing to generate code for Prompt 1 (Compare
Directories) in both languages.

A. Problems found along the evaluation process

While conducting the evaluation, several problems were
encountered, including:



• Bard refusal: Gemini (formerly known as Bard) re-
fused to write the excel_sort in Lua for prompt 2. It
claimed to be unable to directly create Lua code and
only provided an outline.

• Lua libraries incompatibilities with anything newer
than 5.2 : Many of the libraries utilized in the LLM’s
outputs, such as luaxlsx and LuaXML, had incompati-
bility issues with Lua versions above 5.2.

• Non-existing Lua libraries: The outputs of many
LLMs included Lua code that referenced libraries or
functions that did not exist in Lua, such as perplexity
attempt to use fs instead of lfs (Lua File System) in
prompt 6.

• Placeholders instead of actual code: Some out-
puts from LLMs, particularly ChatGPT in prompt
2 (excel_sort) and most LLMs in prompt 6 (dis-
play_text_file) in Lua, produced code that contained
placeholders, like importing a generic nonexistent excel
library and leaving a comment to be replaced by a real
one in the case of ChatGPT. Most LLMs decided to
leave not implemented the GUI elements of prompt
6 with the only exception of perplexity that tried,
to implement using LÖVE library, but failed to even
execute out of many errors with non-existing libraries.

These problems highlight the importance of using version-
specific libraries, conducting thorough testing of the gener-
ated code, and refining the prompt engineering process to
ensure that the LLMs are providing accurate, functional,
and relevant code snippets for the specified tasks. Further
research should focus on addressing these challenges and im-
proving the overall quality and usability of LLM-generated
code.

APPENDIX C.
PROMPT CHANGELOGS

During the evaluation process, several changes were made
to the prompts to clarify their expectations, improve their
clarity, and ensure that they accurately reflected the unit tests
and their requirements. Below, we outline the key changes
made to each prompt:

• Prompt 1: The prompt for ‘compare_directories’ func-
tion was initially written as a high-level description of
the desired functionality. Subsequent revisions provided
a clearer explanation of the expected input, output, and
behavior of the function, particularly in terms of how
the function should handle files with identical names
but different content or last modified dates.

• Prompt 2: Changes to the ‘excel_sort’ prompt primar-
ily aimed to provide additional clarity on the expected
output, making clear that the function should save the
sorted data to a disk temp file and return the file
path. The revisions also emphasized the need for the
function to handle columns with mixed data types, such
as strings, integers, floats, and dates. These revisions

helped ensure that the generated code aligned with the
specific requirements outlined in the unit tests.

• Prompt 3: No significant changes were made to the
‘zipfs_law’ prompt. A single revision related to the
function flow of operation, specifically asking for the
removal of punctuation and conversion of all words to
lowercase before counting them, as the original prompt
did not define if the input text should be cleaned or
not. This clarification aimed to provide more precise
guidelines for the LLMs on how to process the input
string.

• Prompt 4: For the ‘calculate_stats’ prompt, the key
revision was to explicitly state that the standard devia-
tion should be calculated using the population standard
deviation formula, instead of leaving it open to inter-
pretation.

• Prompt 5: Only one change was made to the
‘svg_dot_product’ prompt: the inclusion of the case
where there are fewer than two vectors in the metadata,
making the final prompt include two scenarios where
the function should return -1.

• Prompt 6: For the ‘display_text_file’ prompt, only one
revision was made, with the sole purpose of expanding
the descriptions of each requirement with examples for
better clarification. For instance, it was made explicit
that sorting should be done by the ’value’ key, and that
a new ’test.txt’ temporary file should be created if not
present.

These changes demonstrate the importance of iterative
refinement during the evaluation process. By rephrasing and
clarifying the prompts, we aimed to ensure that the generated
code accurately reflected the expectations and requirements
of the unit tests, ultimately improving the reliability and
consistency of the results. Future studies can benefit from
these lessons by incorporating prompt engineering into their
methodologies from the outset, thus enhancing the overall
quality and applicability of LLM-generated source code.

APPENDIX D.
PARAMETERS USED FOR LIBRARIES ON TESTS

For Pylint, the version 3.1.0 and the default configuration
were used, with no custom rule sets and no additional
argument passed to it. For Luacheck, version 1.0.0 from
the Visual Studio Code extension was utilized, employing
the default settings without any custom configurations or
additional arguments.

In the context of performance evaluation, the
time.perf_counter() function in Python and os.clock()
in Lua were employed to measure the average execution
time over 100,000 iterations. This approach aimed to
provide a reliable and consistent metric for comparing
the computational efficiency of the generated code across
different LLMs and programming languages. The warm-up
period preceding the actual measurements ensured that any



initial overhead, such as loading libraries or initializing
environments, did not skew the results.

For the unit tests, Pytest version 7.4.3 was used to run
the test suite in Python using as For the unit tests, Pytest
version 7.4.3 was used to run the test suite in Python using
the following command:

pytest -v -s absolute_test_file_path.py

For Lua, the unit tests were manually crafted using if state-
ments to check the expected output against the actual output.
The tests were designed to cover the same scenarios as
their Python counterparts, ensuring that the evaluation of the
generated code remained consistent across both languages.

In summary, the evaluation process was designed to be
as comparable as possible, using default configurations for
static analysis tools and standard practices for performance
benchmarking and unit testing.


